Does technology change human or we change technology?


  • Dinko Paulić Microbiology Department, Teaching Institute of Public Health Osijek-Baranja County, Osijek, 31 000, Croatia; Faculty of Medicine in Osijek, University Josip Juraj Strossmayer, Osijek, 31 000, Croatia
  • Željka Perić Kačarević Faculty of Dental Medicine and Health, University Josip Juraj Strossmayer, Osijek, 31 000, Croatia
  • Maja Bogdan Faculty of Medicine in Osijek, University Josip Juraj Strossmayer, Osijek, 31 000, Croatia; Microbiology Department, Clinical hospital center Osijek, 31 000, Croatia



oral microbiome, biomaterial, dental implant


Contemporary medicine is unimaginabile without biotechnological involvment in diagnostic and therapeutic purpouses, but sometimes the discovery and application of new materials go faster then the understanding and adoption of the knowledge about the consequences for our organism. Understanding of biological processes at the microscopycal and molecular level would lead to better integration of biomaterial with human body environment. The primary aim of this review was to evaluate the potential microbiological effect after biomaterial and implant insertions to oral microbiota. The secundary aim was to evaluate if such microbiological shift has any effect to surgical wound-healing, post-implant tissue reaction or rejection of implanted biomaterial. The third aim was to question previous results of similar reviews and studies regarding microbiological role in improving therapeutic responses after biomaterial implantation in dental medicine. A comprehensive systematic search via Web of Science, Scopus and PubMed databases was conducted. The data synthesis showed similar results among clinical studies and several reviews with ambiguous conclusions leaving numerous questions without straight answers. We hypothesized that relationship between host microbiome and biomaterial insertion is mutual, but within the limitations of this review, the interaction between host-oral microbiota and material inset remains uncharted territory.


N. Huebsch and D. J. Mooney, ‘Inspiration and application in the evolution of biomaterials’, Nature, vol. 462, no. 7272, pp. 426–432, Nov. 2009, doi: 10.1038/nature08601.

H. Wang, ‘Biomaterials in Medical Applications’, Polymers, vol. 15, no. 4, pp. 847–847, Feb. 2023, doi: 10.3390/polym15040847.

L. Rodríguez-Arco, A. Poma, L. Ruiz-Pérez, E. Scarpa, K. Ngamkham, and G. Battaglia, ‘Molecular bionics – engineering biomaterials at the molecular level using biological principles’, Biomaterials, vol. 192, pp. 26–50, Feb. 2019, doi: 10.1016/j.biomaterials.2018.10.044.

Antal Ivana, ‘Ljudska mikrobiota i mikrobiom’, Acta Med. Croatica, vol. 73, no. 1, pp. 3–11, 2019.

D. Gevers et al., ‘The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome’, PLoS Biol., vol. 10, no. 8, pp. e1001377–e1001377, Aug. 2012, doi: 10.1371/journal.pbio.1001377.

Vraneš Jasmina and Leskovar Vladimira, ‘Značenje nastanka mikrobnog bioilma u patogenezi i liječenju kroničnih infekcija’, Med. Glas., vol. 6, Aug. 2009.

N. Fierer, C. L. Lauber, N. Zhou, D. McDonald, E. K. Costello, and R. Knight, ‘Forensic identification using skin bacterial communities’, Proc. Natl. Acad. Sci., vol. 107, no. 14, pp. 6477–6481, Apr. 2010, doi: 10.1073/pnas.1000162107.

J. R. Willis and T. Gabaldón, ‘The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems’, Microorganisms, vol. 8, no. 2, pp. 308–308, Feb. 2020, doi: 10.3390/microorganisms8020308.

C. Boehlke, O. Zierau, and C. Hannig, ‘Salivary amylase – The enzyme of unspecialized euryphagous animals’, Arch. Oral Biol., vol. 60, no. 8, pp. 1162–1176, Aug. 2015, doi: 10.1016/j.archoralbio.2015.05.008.

L. Deng et al., ‘Oral Streptococci Utilize a Siglec-Like Domain of Serine-Rich Repeat Adhesins to Preferentially Target Platelet Sialoglycans in Human Blood’, PLoS Pathog., vol. 10, no. 12, pp. e1004540–e1004540, Dec. 2014, doi: 10.1371/journal.ppat.1004540.

M. Kilian et al., ‘The oral microbiome – an update for oral healthcare professionals’, Br. Dent. J., vol. 221, no. 10, pp. 657–666, Nov. 2016, doi: 10.1038/sj.bdj.2016.865.

R. J. Lamont, H. Koo, and G. Hajishengallis, ‘The oral microbiota: dynamic communities and host interactions’, Nat. Rev. Microbiol., vol. 16, no. 12, pp. 745–759, Dec. 2018, doi: 10.1038/s41579-018-0089-x.

A. A. Scheie and F. C. Petersen, ‘The Biofilm concept:Consequences for Future Prophylaxis of Oral Diseases?’, Crit. Rev. Oral Biol. Med., vol. 15, no. 1, pp. 4–12, Jan. 2004, doi: 10.1177/154411130401500102.

P. M. Preshaw, R. A. Seymour, and P. A. Heasman, ‘Current Concepts in Periodontal Pathogenesis’, Dent. Update, vol. 31, no. 10, pp. 570–578, Dec. 2004, doi: 10.12968/denu.2004.31.10.570.

L. Sbordone and C. Bortolaia, ‘Oral microbial biofilms and plaque-related diseases: microbial communities and their role in the shift from oral health to disease’, Clin. Oral Investig., vol. 7, no. 4, pp. 181–188, Dec. 2003, doi: 10.1007/s00784-003-0236-1.

C. H. Alves et al., ‘Host-microbiome interactions regarding peri-implantitis and dental implant loss’, J. Transl. Med., vol. 20, no. 1, pp. 425–425, Sep. 2022, doi: 10.1186/s12967-022-03636-9.

P. I. Diaz et al., ‘Molecular Characterization of Subject-Specific Oral Microflora during Initial Colonization of Enamel’, Appl. Environ. Microbiol., vol. 72, no. 4, pp. 2837–2848, Apr. 2006, doi: 10.1128/AEM.72.4.2837-2848.2006.

A. Shavandi, P. Saeedi, P. Gérard, E. Jalalvandi, D. Cannella, and A. E. Bekhit, ‘The role of microbiota in tissue repair and regeneration’, J. Tissue Eng. Regen. Med., vol. 14, no. 3, pp. 539–555, Mar. 2020, doi: 10.1002/term.3009.

Palmer Robert J., S. M. Gordon, J. O. Cisar, and P. E. Kolenbrander, ‘Coaggregation-Mediated Interactions of Streptococci and Actinomyces Detected in Initial Human Dental Plaque’, J. Bacteriol., vol. 185, no. 11, pp. 3400–3409, Jun. 2003, doi: 10.1128/JB.185.11.3400-3409.2003.

P. E. Kolenbrander, N. Ganeshkumar, F. J. Cassels, and C. V. Hughes, ‘Coaggregation: specific adherence among human oral plaque bacteria’, FASEB J., vol. 7, no. 3, pp. 406–413, Mar. 1993, doi: 10.1096/fasebj.7.5.8462782.

P. E. Kolenbrander, ‘Oral Microbial Communities: Biofilms, Interactions, and Genetic Systems’, Annu. Rev. Microbiol., vol. 54, no. 1, pp. 413–437, Oct. 2000, doi: 10.1146/annurev.micro.54.1.413.

P. S. Kumar, A. L. Griffen, M. L. Moeschberger, and E. J. Leys, ‘Identification of Candidate Periodontal Pathogens and Beneficial Species by Quantitative 16S Clonal Analysis’, J. Clin. Microbiol., vol. 43, no. 8, pp. 3944–3955, Aug. 2005, doi: 10.1128/JCM.43.8.3944-3955.2005.

S. Sayardoust, A. Johansson, and D. Jönsson, ‘Do Probiotics Cause a Shift in the Microbiota of Dental Implants—A Systematic Review and Meta-Analysis’, Front. Cell. Infect. Microbiol., vol. 12, Mar. 2022, doi: 10.3389/fcimb.2022.823985.

C. M. Guinane and P. D. Cotter, ‘Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ’, Ther. Adv. Gastroenterol., vol. 6, no. 4, pp. 295–308, Jul. 2013, doi: 10.1177/1756283X13482996.

ThiagoA. L. Burgo, G. K. R. Pereira, B. A. Iglesias, K. S. Moreira, and L. F. Valandro, ‘AFM advanced modes for dental and biomedical applications’, J. Mech. Behav. Biomed. Mater., vol. 136, pp. 105475–105475, Dec. 2022, doi: 10.1016/j.jmbbm.2022.105475.

J. Kreth, J. Merritt, C. S. Pfeifer, S. Khajotia, and J. L. Ferracane, ‘Interaction between the Oral Microbiome and Dental Composite Biomaterials: Where We Are and Where We Should Go’, J. Dent. Res., vol. 99, no. 10, pp. 1140–1149, Sep. 2020, doi: 10.1177/0022034520927690.

A. Butera, M. Pascadopoli, M. Pellegrini, S. Gallo, P. Zampetti, and A. Scribante, ‘Oral Microbiota in Patients with Peri-Implant Disease: A Narrative Review’, Appl. Sci., vol. 12, no. 7, pp. 3250–3250, Mar. 2022, doi: 10.3390/app12073250.

S.-L. Chen et al., ‘The gut microbiota regulates acute foreign body reaction and tissue repair after biomaterial implantation’, Biomaterials, vol. 289, pp. 121807–121807, Oct. 2022, doi: 10.1016/j.biomaterials.2022.121807.

L. Sadeghinejad, D. G. Cvitkovitch, W. L. Siqueira, J. P. Santerre, and Y. Finer, ‘Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans’, PLOS ONE, vol. 11, no. 11, pp. e0165760–e0165760, Nov. 2016, doi: 10.1371/journal.pone.0165760.

D. T. de Castro, C. do Nascimento, O. L. Alves, E. de Souza Santos, J. A. M. Agnelli, and A. C. dos Reis, ‘Analysis of the oral microbiome on the surface of modified dental polymers’, Arch. Oral Biol., vol. 93, pp. 107–114, Sep. 2018, doi: 10.1016/j.archoralbio.2018.06.005.

S. M. Soucy, J. Huang, and J. P. Gogarten, ‘Horizontal gene transfer: building the web of life’, Nat. Rev. Genet., vol. 16, no. 8, pp. 472–482, Aug. 2015, doi: 10.1038/nrg3962.

L. Fontaine, A. Wahl, M. Fléchard, J. Mignolet, and P. Hols, ‘Regulation of competence for natural transformation in streptococci’, Infect. Genet. Evol., vol. 33, pp. 343–360, Jul. 2015, doi: 10.1016/j.meegid.2014.09.010.

J. S. Madsen, M. Burmølle, L. H. Hansen, and S. J. Sørensen, ‘The interconnection between biofilm formation and horizontal gene transfer’, FEMS Immunol. Med. Microbiol., vol. 65, no. 2, pp. 183–195, Jul. 2012, doi: 10.1111/j.1574-695X.2012.00960.x.

D. M. Fitzgerald and S. M. Rosenberg, ‘What is mutation? A chapter in the series: How microbes “jeopardize” the modern synthesis’, PLOS Genet., vol. 15, no. 4, pp. e1007995–e1007995, Apr. 2019, doi: 10.1371/journal.pgen.1007995.

Y. Ram and L. Hadany, ‘Evolution of Stress-Induced Mutagenesis in the Presence of Horizontal Gene Transfer’, Am. Nat., vol. 194, no. 1, pp. 73–89, Jul. 2019, doi: 10.1086/703457.

Y.-L. Jiang et al., ‘Quaternary ammonium-induced multidrug tolerant Streptococcus mutans persisters elevate cariogenic virulence in vitro’, Int. J. Oral Sci., vol. 9, no. 12, pp. e7–e7, Dec. 2017, doi: 10.1038/ijos.2017.46.

C. Montoya, Y. Du, A. L. Gianforcaro, S. Orrego, M. Yang, and P. I. Lelkes, ‘On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook’, Bone Res., vol. 9, no. 1, pp. 12–12, Feb. 2021, doi: 10.1038/s41413-020-00131-z.

J. Dong et al., ‘Immunomodulatory biomaterials for implant-associated infections: from conventional to advanced therapeutic strategies’, Biomater. Res., vol. 26, no. 1, pp. 72–72, Dec. 2022, doi: 10.1186/s40824-022-00326-x.

S. Wu et al., ‘Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection’, Nat. Commun., vol. 12, no. 1, pp. 3303–3303, Jun. 2021, doi: 10.1038/s41467-021-23069-0.

A. Wawrzyk et al., ‘Analysis of the Microbiome on the Surface of Corroded Titanium Dental Implants in Patients with Periimplantitis and Diode Laser Irradiation as an Aid in the Implant Prosthetic Treatment: An Ex Vivo Study’, Materials, vol. 15, no. 17, pp. 5890–5890, Aug. 2022, doi: 10.3390/ma15175890.

S. Amin Yavari, S. M. Castenmiller, J. A. G. van Strijp, and M. Croes, ‘Combating Implant Infections: Shifting Focus from Bacteria to Host’, Adv. Mater., vol. 32, no. 43, Oct. 2020, doi: 10.1002/adma.202002962.




How to Cite

Paulić, D., Perić Kačarević, Željka, & Bogdan, M. (2023). THE IMPACT OF IMPLANTED BIOMATERIAL TO THE MICROBIOME: Does technology change human or we change technology?. International Journal of Dental Biomaterials Research, 1, 13–21.