Challenges in vitamin D measurement and its role on bone regeneration
DOI:
https://doi.org/10.56939/DBR23136tKeywords:
vitamin D, analytical performance, accuracy, standardizationAbstract
Vitamin D plays a crucial role in calcium homeostasis and is significantly involved in the maintenance of a strong mineralized skeleton, healthy teeth, and bone regeneration. Apart of this main function, the scientific evidence of vitamin D involvement in numerous physiological and pathological processes has been growing, linking deficiencies to systematic diseases, autoimmune diseases, and various infections. Over the last years, it has been made clear that modern lifestyle has been the major contributor to vitamin D deficiency globally and the extended awareness has led to an significant increase in vitamin D levels testing. There is a wide range of available testing methodologies, posing different limitations, such as cross-reactivity, low detection capacity, limited throughput, requirement of highly competent staff. Those result from not only due to assay limitations but also due to the complexity of vitamin D metabolisms and catabolism. With liquid chromatography in tandem with mass spectrometry (LC-MS/MS) still considered the gold standard to vitamin D blood level detection, novel point-of-care technologies emerge aiming to bypass the strong monitored variability between assays. The aim of this review is to discuss the crucial limitations of vitamin D measuring assays regarding accuracy and the important issues to consider when interpreting vitamin D results in the dental office.
References
G. Wolf, “History of Nutrition The Discovery of Vitamin D: The Contribution of Adolf Windaus,” 2004, Accessed: Nov. 22, 2023.
M. F. Holick, “Vitamin D deficiency,” N Engl J Med, vol. 357, no. 3, pp. 266–281, Jul. 2007, doi: 10.1056/NEJMRA070553.
M. Van Driel et al., “Evidence that both 1alpha,25-dihydroxyvitamin D3 and 24-hydroxylated D3 enhance human osteoblast differentiation and mineralization,” J Cell Biochem, vol. 99, no. 3, pp. 922–935, Oct. 2006, doi: 10.1002/JCB.20875.
D. D. Bikle, “Vitamin D and Bone,” Curr Osteoporos Rep, vol. 10, no. 2, p. 151, Jun. 2012, doi: 10.1007/S11914-012-0098-Z.
J. van de Peppel and J. P. T. M. van Leeuwen, “Vitamin D and gene networks in human osteoblasts,” Front Physiol, vol. 5, 2014, doi: 10.3389/FPHYS.2014.00137.
A. Zarei, A. Morovat, K. Javaid, and C. P. Brown, “Vitamin D receptor expression in human bone tissue and dose-dependent activation in resorbing osteoclasts,” Bone Res, vol. 4, no. 1, p. 16030, Oct. 2016, doi: 10.1038/BONERES.2016.30.
D. Xu, H. J. Gao, C. Y. Lu, H. M. Tian, and X. J. Yu, “Vitamin D inhibits bone loss in mice with thyrotoxicosis by activating the OPG/RANKL and Wnt/β-catenin signaling pathways,” Front Endocrinol (Lausanne), vol. 13, Nov. 2022, doi: 10.3389/FENDO.2022.1066089.
N. H. Bell, “Vitamin D metabolism, aging, and bone loss,” J Clin Endocrinol Metab, vol. 80, no. 4, pp. 1051–1051, Apr. 1995, doi: 10.1210/JCEM.80.4.7714064.
E. Diachkova et al., “Vitamin D and Its Role in Oral Diseases Development. Scoping Review,” Dent J (Basel), vol. 9, no. 11, Nov. 2021, doi: 10.3390/DJ9110129.
J. Botelho, V. Machado, L. Proença, A. S. Delgado, and J. J. Mendes, “Vitamin D Deficiency and Oral Health: A Comprehensive Review,” Nutrients, vol. 12, no. 5, May 2020, doi: 10.3390/NU12051471.
M. Shah et al., “Vitamin D and Periodontal Health: A Systematic Review,” Cureus, vol. 15, no. 10, Oct. 2023, doi: 10.7759/CUREUS.47773.
R. J. Schroth, R. Rabbani, G. Loewen, and M. E. Moffatt, “Vitamin D and Dental Caries in Children,” J Dent Res, vol. 95, no. 2, pp. 173–179, Feb. 2016, doi: 10.1177/0022034515616335.
F. Zhou, Y. Zhou, and J. Shi, “The association between serum 25-hydroxyvitamin D levels and dental caries in US adults,” Oral Dis, vol. 26, no. 7, pp. 1537–1547, Oct. 2020, doi: 10.1111/ODI.13360.
I. J. Kim, H. S. Lee, H. J. Ju, J. Y. Na, and H. W. Oh, “A cross-sectional study on the association between vitamin D levels and caries in the permanent dentition of Korean children,” BMC Oral Health, vol. 18, no. 1, pp. 1–6, Mar. 2018, doi: 10.1186/S12903-018-0505-7/TABLES/4.
B. Prietl, G. Treiber, T. R. Pieber, and K. Amrein, “Vitamin D and Immune Function,” Nutrients 2013, Vol. 5, Pages 2502-2521, vol. 5, no. 7, pp. 2502–2521, Jul. 2013, doi: 10.3390/NU5072502.
M. Siddiqui et al., “Immune Modulatory Effects of Vitamin D on Viral Infections,” Nutrients 2020, Vol. 12, Page 2879, vol. 12, no. 9, p. 2879, Sep. 2020, doi: 10.3390/NU12092879.
G. Penna and L. Adorini, “1α,25-Dihydroxyvitamin D3 Inhibits Differentiation, Maturation, Activation, and Survival of Dendritic Cells Leading to Impaired Alloreactive T Cell Activation,” The Journal of Immunology, vol. 164, no. 5, pp. 2405–2411, Mar. 2000, doi: 10.4049/JIMMUNOL.164.5.2405.
T. Ao, J. Kikuta, and M. Ishii, “The Effects of Vitamin D on Immune System and Inflammatory Diseases,” Biomolecules 2021, Vol. 11, Page 1624, vol. 11, no. 11, p. 1624, Nov. 2021, doi: 10.3390/BIOM11111624.
Ł. Ustianowski, K. Ustianowska, K. Gurazda, M. Rusiński, P. Ostrowski, and A. Pawlik, “The Role of Vitamin C and Vitamin D in the Pathogenesis and Therapy of Periodontitis-Narrative Review,” Int J Mol Sci, vol. 24, no. 7, Apr. 2023, doi: 10.3390/IJMS24076774.
C. J. Lavie, J. H. Lee, and R. V. Milani, “Vitamin D and cardiovascular disease will it live up to its hype?,” J Am Coll Cardiol, vol. 58, no. 15, pp. 1547–1556, Oct. 2011, doi: 10.1016/J.JACC.2011.07.008.
N. Charoenngam and M. F. Holick, “Immunologic Effects of Vitamin D on Human Health and Disease,” 2020, doi: 10.3390/nu12072097.
L. R. Wilson, L. Tripkovic, K. H. Hart, and S. A. Lanham-New, “Vitamin D deficiency as a public health issue: using vitamin D2 or vitamin D3 in future fortification strategies,” Proc Nutr Soc, vol. 76, no. 3, pp. 392–399, Aug. 2017, doi: 10.1017/S0029665117000349.
S. W. Chang and H. C. Lee, “Vitamin D and health - The missing vitamin in humans,” Pediatr Neonatol, vol. 60, no. 3, pp. 237–244, Jun. 2019, doi: 10.1016/J.PEDNEO.2019.04.007.
D. D. Bikle, “Vitamin D metabolism, mechanism of action, and clinical applications,” Chem Biol, vol. 21, no. 3, pp. 319–329, Mar. 2014, doi: 10.1016/J.CHEMBIOL.2013.12.016.
L. J. Dominguez, M. Farruggia, N. Veronese, and M. Barbagallo, “Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment,” Metabolites, vol. 11, no. 4, Apr. 2021, doi: 10.3390/METABO11040255.
J. D. Maxwell, “Seasonal variation in vitamin D,” Proc Nutr Soc, vol. 53, no. 3, pp. 533–543, Nov. 1994, doi: 10.1079/PNS19940063.
I. A. F. van der Mei et al., “The high prevalence of vitamin D insufficiency across Australian populations is only partly explained by season and latitude,” Environ Health Perspect, vol. 115, no. 8, pp. 1132–1139, Aug. 2007, doi: 10.1289/EHP.9937.
J. K. Pittaway, K. D. K. Ahuja, J. M. Beckett, M. L. Bird, I. K. Robertson, and M. J. Ball, “Make vitamin D while the sun shines, take supplements when it doesn’t: a longitudinal, observational study of older adults in Tasmania, Australia,” PLoS One, vol. 8, no. 3, Mar. 2013, doi: 10.1371/JOURNAL.PONE.0059063.
T. L. Clemens, S. L. Henderson, J. S. Adams, and M. F. Holick, “Increased skin pigment reduces the capacity of skin to synthesise vitamin D3,” Lancet, vol. 1, no. 8263, pp. 74–76, Jan. 1982, doi: 10.1016/S0140-6736(82)90214-8.
H. M. Trang, D. E. C. Cole, L. A. Rubin, A. Pierratos, S. Siu, and R. Vieth, “Evidence that vitamin D3 increases serum 25-hydroxyvitamin D more efficiently than does vitamin D2,” Am J Clin Nutr, vol. 68, no. 4, pp. 854–858, 1998, doi: 10.1093/AJCN/68.4.854.
E. Romagnoli et al., “Short and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly,” J Clin Endocrinol Metab, vol. 93, no. 8, pp. 3015–3020, 2008, doi: 10.1210/JC.2008-0350.
M. F. Holick et al., “Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D,” J Clin Endocrinol Metab, vol. 93, no. 3, pp. 677–681, 2008, doi: 10.1210/JC.2007-2308.
L. Tripkovic et al., “Comparison of vitamin D 2 and vitamin D 3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis 1-3”, doi: 10.3945/ajcn.111.031070.
D. D. Bikle and J. Schwartz, “Vitamin D Binding Protein, Total and Free Vitamin D Levels in Different Physiological and Pathophysiological Conditions,” Front Endocrinol (Lausanne), vol. 10, no. MAY, 2019, doi: 10.3389/FENDO.2019.00317.
Á. Gil, J. Plaza-Diaz, and M. D. Mesa, “Vitamin D: Classic and Novel Actions,” Ann Nutr Metab, vol. 72, no. 2, pp. 87–95, Mar. 2018, doi: 10.1159/000486536.
C. T. Sempos, H. W. Vesper, K. W. Phinney, L. M. Thienpont, and P. M. Coates, “Vitamin D status as an international issue: national surveys and the problem of standardization,” Scand J Clin Lab Invest Suppl, vol. 243, no. SUPPL. 243, pp. 32–40, Apr. 2012, doi: 10.3109/00365513.2012.681935.
C. Jenkinson, “The vitamin D metabolome: An update on analysis and function,” Cell Biochem Funct, vol. 37, no. 6, pp. 408–423, Aug. 2019, doi: 10.1002/CBF.3421.
D. Zehnder et al., “Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase,” J Clin Endocrinol Metab, vol. 86, no. 2, pp. 888–894, Feb. 2001, doi: 10.1210/JCEM.86.2.7220.
M. Hewison et al., “Extra-renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and disease,” J Steroid Biochem Mol Biol, vol. 103, no. 3–5, pp. 316–321, Mar. 2007, doi: 10.1016/J.JSBMB.2006.12.078.
M. Hewison, “Vitamin D and the intracrinology of innate immunity,” Mol Cell Endocrinol, vol. 321, no. 2, pp. 103–111, Jun. 2010, doi: 10.1016/J.MCE.2010.02.013.
D. Somjen et al., “25-hydroxyvitamin D3-1alpha-hydroxylase is expressed in human vascular smooth muscle cells and is upregulated by parathyroid hormone and estrogenic compounds,” Circulation, vol. 111, no. 13, pp. 1666–1671, Apr. 2005, doi: 10.1161/01.CIR.0000160353.27927.70.
C. J. L. Farrell, S. Martin, B. McWhinney, I. Straub, P. Williams, and M. Herrmann, “State-of-the-art vitamin D assays: a comparison of automated immunoassays with liquid chromatography-tandem mass spectrometry methods,” Clin Chem, vol. 58, no. 3, pp. 531–542, Mar. 2012, doi: 10.1373/CLINCHEM.2011.172155.
N. Binkley, D. C. Krueger, S. Morgan, and D. Wiebe, “Current Status of Clinical 25-hydroxyvitamin D Measurement: An Assessment of Between-Laboratory Agreement,” Clin Chim Acta, vol. 411, no. 23–24, p. 1976, Dec. 2010, doi: 10.1016/J.CCA.2010.08.018.
N. Alonso, S. Zelzer, G. Eibinger, and M. Herrmann, “Vitamin D Metabolites: Analytical Challenges and Clinical Relevance,” Calcified Tissue International 2022 112:2, vol. 112, no. 2, pp. 158–177, Mar. 2022, doi: 10.1007/S00223-022-00961-5.
J. R. Delanghe, R. Speeckaert, and M. M. Speeckaert, “Behind the scenes of vitamin D binding protein: More than vitamin D binding,” Best Pract Res Clin Endocrinol Metab, vol. 29, no. 5, pp. 773–786, Oct. 2015, doi: 10.1016/J.BEEM.2015.06.006.
J. A. Eisman, R. M. Shepard, and H. F. DeLuca, “Determination of 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 in human plasma using high-pressure liquid chromatography,” Anal Biochem, vol. 80, no. 1, pp. 298–305, May 1977, doi: 10.1016/0003-2697(77)90648-0.
H. C. M. Stepman, A. Vanderroost, D. Stöckl, and L. M. Thienpont, “Full-scan mass spectral evidence for 3-epi-25-hydroxyvitamin D₃ in serum of infants and adults,” Clin Chem Lab Med, vol. 49, no. 2, pp. 253–256, Feb. 2011, doi: 10.1515/CCLM.2011.050.
B. Al-Zohily, A. Al-Menhali, S. Gariballa, A. Haq, and I. Shah, “Epimers of Vitamin D: A Review,” Int J Mol Sci, vol. 21, no. 2, Jan. 2020, doi: 10.3390/IJMS21020470.
K. Makris et al., “Recommendations on the measurement and the clinical use of vitamin D metabolites and vitamin D binding protein - A position paper from the IFCC Committee on bone metabolism,” Clin Chim Acta, vol. 517, pp. 171–197, Jun. 2021, doi: 10.1016/J.CCA.2021.03.002.
J. P. M. Wielders and F. A. Wijnberg, “Preanalytical stability of 25(OH)-vitamin D3 in human blood or serum at room temperature: solid as a rock,” Clin Chem, vol. 55, no. 8, pp. 1584–1585, Aug. 2009, doi: 10.1373/CLINCHEM.2008.117366.
E. Cavalier, “Long-term stability of 25-hydroxyvitamin D: Importance of the analytical method and of the patient matrix,” Clin Chem Lab Med, vol. 59, no. 10, pp. E389–E391, Sep. 2021, doi: 10.1515/CCLM-2021-0382/MACHINEREADABLECITATION/RIS.
J. G. Lewis and P. A. Elder, “Serum 25-OH vitamin D2 and D3 are stable under exaggerated conditions,” Clin Chem, vol. 54, no. 11, pp. 1931–1932, Nov. 2008, doi: 10.1373/CLINCHEM.2008.111526.
K. Albrecht, J. Lotz, L. Frommer, K. J. Lackner, and G. J. Kahaly, “A rapid point-of-care assay accurately measures vitamin D,” J Endocrinol Invest, vol. 44, no. 11, pp. 2485–2492, Nov. 2021, doi: 10.1007/S40618-021-01575-8.
N. Binkley et al., “Assay variation confounds the diagnosis of hypovitaminosis D: a call for standardization,” J Clin Endocrinol Metab, vol. 89, no. 7, pp. 3152–3157, Jul. 2004, doi: 10.1210/JC.2003-031979.
M. Rahme et al., “Limitations of Platform Assays to Measure Serum 25OHD Level Impact on Guidelines and Practice Decision Making,” Metabolism, vol. 89, p. 1, Dec. 2018, doi: 10.1016/J.METABOL.2018.09.003.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Kristina Tseneva, Željka Perić Kačarević
This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles in IJDBR (OTA Publiciranje/Publishing) are open access articles and are being distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)